Computing Semantic Similarity Measure between Words Using Web Search Engine
نویسنده
چکیده
Semantic Similarity measures between words plays an important role in information retrieval, natural language processing and in various tasks on the web. In this paper, we have proposed a Modified Pattern Extraction Algorithm to compute the supervised semantic similarity measure between the words by combining both page count method and web snippets method. Four association measures are used to find semantic similarity between words in page count method using web search engines. We use a Sequential Minimal Optimization (SMO) support vector machines (SVM) to find the optimal combination of page counts-based similarity scores and top-ranking patterns from the web snippets method. The SVM is trained to classify synonymous word-pairs and non-synonymous word-pairs. The proposed Modified Pattern Extraction Algorithm outperforms by 89.8 percent of correlation value.
منابع مشابه
A Web Search Engine-based Approach to Measure Semantic Similarity between Words
Measuring the semantic similarity between words is an important component in various tasks on the web such as relation extraction, community mining, document clustering, and automatic metadata extraction. Despite the usefulness of semantic similarity measures in these applications, accurately measuring semantic similarity between two words (or entities) remains a challenging task. We propose an...
متن کاملA Web Search Engine-Based Approach to Measure Semantic Similarity between Words
easuring the semantic similarity between words is an important component in various tasks on the web such as relation extraction, community mining, document clustering, and automatic metadata extraction. Despite the usefulness of semantic similarity measures in these applications, accurately measuring semantic similarity between two words (or entities) remains a challenging task. We propose an ...
متن کاملSimilarity Measure Using Link Based Approach
Web search engines provide an efficient interface to vast information. This web search engine provides the most semantic relativity between the given words, and it will generate the semantic measures automatically, since data on the web is noisy, huge and dynamic. we propose and analyzed and visualized similarity relationships in Web data sets to identify how to integrate content and link analy...
متن کاملAn integrated approach for measuring semantic similarity between words and sentences using web search engine
Semantic similarity measures play vital roles in Information Retrieval (IR) and Natural Language Processing (NLP). Despite the usefulness of semantic similarity measures in various applications, strongly measuring semantic similarity between two words remains a challenging task. Here, three semantic similarity measures have been proposed, that uses the information available on the web to measur...
متن کاملInformation Retrieval Based on Semantic Similarity Using Information Content
Evaluating semantic similarity of concepts is a problem that has been extensively investigated in the literature in different areas, such as artificial intelligence, cognitive science, databases and software engineering. Semantic similarity relates to computing the similarity between conceptually similar but not necessarily lexically similar terms. Currently, it is growing in importance in diff...
متن کامل